- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Cui, Yifan (1)
-
Li, Qi (1)
-
Liu, Yuanbo (1)
-
Tang, Liangjun (1)
-
Wang, Jingfeng (1)
-
Wang, Ruonan (1)
-
Xing, Wanqiu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Heat storage change (HSC) is a crucial component of lake's thermal energy budget. Conventional temperature profile based models of HSC require location specific parameters such as lakebed topography. Based on the half‐order time‐derivative formula of heat fluxes, an analytical model was formulated for estimating HSC from water surface temperature and solar radiation without using geography dependent parameters. The proposed model was tested against field measurements at Poyang Lake, a shallow inland lake, which has pronounced seasonal variations in water level and lake area. Our analysis indicates that the model accurately simulates diurnal HSC with a coefficient of determination of 0.94 and a root mean squared error (RMSE) of 77.5 ± 21.6 Wm−2for the study period. Larger nighttime RMSE (75.0 ± 26.8 Wm−2) than the daytime value (55.1 ± 19.7 W m−2) is attributable to larger measurement errors of nighttime turbulent fluxes. The estimation of HSC independent of temperature profile and lake‐specific parameters by the proposed model facilitates remote sensing monitoring the HSC of global water bodies.more » « less
An official website of the United States government
